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1 Introduction

In this review project, we will first see how Berry Phase arises in a quantum
system when it is subject to adiabatic changes through some closed path. We
will then derive an explicit formula for Berry Phase and will see some of its
properties. Then to see its connection with geometry, we will develop some
basics of differential geometry from manifolds to tangent spaces to fibre bundles.
Once we have the notion of a fibre bundle, we will define a connection on this
fibre bundle. We will then see how the tangent space (of the total space of the
Fibre Bundle) splits into a Vertical subspace and a Horizontal subspace. This
will lead to the concept of a horizontal lift (of some curve in the base space to the
total space). We will see that this naturally leads to the concept of Holonomy.
After we have looked at Holonomy, we will see how we can see Berry Phase as
a Holonomy. Finally, to understand the concept of Berry Phase as a Holonomy,
we will look at two specific examples : A spin - 1

2 particle in a magnetic field
and the Ahoronov Bohm effect. We will see how Berry Phase arises in these
examples and how can it be seen as a Holonomy.
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2 Berry Phase

Berry Phase is the additional phase that arises along with the dynamical phase
when a quantum system is subject to adiabatic changes through a closed path.
To see how it arises, we first need to understand the quantum adiabatic theorem.
Consider a time varying Hamiltonian Ĥ(t). It has non-degenerate eigenvalues
E1, E2, ...., En with eigenstates |φn(t)〉 At time t = 0 , the system is in the state
|φn(0)〉 The quantum adiabatic theorem states that if the variation in Ĥ(t) is
slow, then at time t, the system is in a state eiγ |φn(t)〉 This is an instantaneous
eigenstate of the Hamiltonian. In simpler terms, the system always remains in
an eigenstate of the slowly varying Hamiltonian with at most a phase factor.
This additional phase as we will see later cannot be ignored. This is the Berry
Phase.

Now we will derive an explicit formula for Berry Phase.
Consider the parameter space of the Hamiltonian. It is described by R(t).

Then, we can write the Hamiltonian as H = H(R(t)) This Hamiltonian is
varied adiabatically and the system is transported around a closed path c in the
parameter space such that R(0) = R(T )
Then, H(R(t)) has eigenstates |n(R(t))〉 such that

H(R)|n(R)〉 = En(R)|n(R)〉 (2.1)

The evolution of the system is given by the Schrodinger’s Equation,

Ĥ(R)|ψ(t)〉 = i~
d

dt
|ψ(t)〉 (2.2)

If the system is prepared in the state |n(R(0))〉, from the adiabatic theorem,
it will be in a state eiγ(t)|n(R(t))〉 after time t. The final state of the system
can be written as:

|ψ(t)〉 = e−iθ(t)eiγn(t)|n(R(t))〉 (2.3)

where,

θ(t) =
1
~

∫ t

0

dt́En(R(t́)) (2.4)

is the dynamical phase that comes whenever a system undergoes time evo-
lution. γn(t) is the geometrical phase called the Berry Phase and depends only
on the geometry of the ciruit traversed in the parameter space.

We now use (2.4) and (2.3) in (2.2) to get,

Ĥ|ψ〉 = e−iθeiγn(t)En(R)|n(R)〉 (2.5)

and,

i~
d

dt
|ψ〉 = i~[i ˙γn(t)e−iθeiγn(t)|n(R)〉+e−iθeiγn(t) d

dt
|n(R)〉−i ˙θ(t)e−iθeiγn(t)|n(R)〉]

(2.6)
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From the definition of θ , we get ,

i~θ̇ = iEn(R(t)) (2.7)

Using this in (2.5) and (2.6) we get,

d

dt
|n(R)〉+ iγ̇n|n(R)〉 = 0 (2.8)

Taking its dot product with 〈n(R)|, and with the normalization 〈n(R)|n(R)〉 =
1 , we get,

γ̇n = i〈n(R)| d
dt
|n(R)〉 (2.9)

using the chain rule, we have d
dt = ∇R dRdt and integrating the above equation,

we get,

γn = i

∮
c

〈n(R)|∇R|n(R)〉dR (2.10)

From this, it is clear that Berry Phase is only a geometrical property, it
depends only on the ciruit traversed in the parameter space and not on how
fast or slow it was traversed.

Now, we will look into some of its properties,
Since 〈n(R)|n(R)〉 = 1, we have,

∇R〈n(R)|n(R)〉 = 0 (2.11)

⇒ 〈n(R)|∇R|n(R)〉+ (〈n(R)|∇R|n(R)〉)∗ = 0 (2.12)

⇒ Re(〈n(R)|∇R|n(R)〉) = 0 (2.13)

⇒ γn is purely Real.
Another important property of Berry Phase is that it is gauge invariant.
define,

An(R) = i〈n(R)|∇R|n(R)〉 (2.14)

and consider a transformation of the states as,

˜|n(R)〉 = eiζn(R)|n(R)〉 (2.15)

where ζn(R) is a single valued function on the parameter space.
Then,

Ãn = i ˜〈n(R)|∇R ˜|n(R)〉 (2.16)

⇒ ˜An(R) = iAn(R)−∇Rζn(R) (2.17)
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⇒ γ̃n =
∮

˜An(R)dR (2.18)

Now since ζn(R) is single valued
∮
∇Rζn(R)dR = 0

⇒ γ̃n = γn (2.19)

Hence, the Berry Phase is gauge invariant.
Note that the equation (2.15) is just a transformation of basis. This means

that we cannot remove this geometric phase by some transformation of the basis.
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3 Geometric Interpretation of Berry Phase

Now that we have understood what a Berry Phase is, we will see its geometric
interpretation. That is how can we understand it from a differential geome-
try perspective. Before we do that, we will revise very briefly some basics of
differential geometry.

3.1 Introduction to Differential Geometry

Differentiable Manifold
A differentiable manifold of dimension n is a set M and a family of injective

mappings :
Xα : Uα ⊆ Rn →M of open sets Uα such that :

i.
⋃
αXα(Uα) = M

ii. For any pair α, β withXα(Uα)
⋂
Xβ(Uβ) = W 6= φ the setsX−1

α (W ), X−1
β (W )

are open in Rn and X−1
β oXα is differentiable.

iii. The Family (Xα, Uα) is maximal w.r.t (i) and (ii).
In very simple terms, A Manifold is a set which locally ”looks like” Euclidean

space. Since we know how to do calculus on a Euclidean space, we cover all
of the set by some mappings to Euclidean space. Then, whenever we want to
compute something on the manifold, we simply use the maps and the inverse
maps to bring the computation down to Euclidean space, perform the compu-
tation and then take it back to the Manifold. For example, Rn is a manifold,
the sphere is a manifold (S2) etc.

Tangent Vector
Let α : (−ε, ε)→M be a curve in M with α(0) = P and parametrized by t.

f is a differentiable function in the neighborhood of P. Then the tangent vector
at t = 0 (or at P) is defined as:

ά(0)f = d
dt (f ◦α)|t=0. This can be written in terms of the local co-ordinates

(which are the mappings from M to Rn ) as,
ά(0)f = (

∑n
i=1 x́i(0) ∂

∂xi
)f

The set of all tangent vectors at P is called the Tangent Space denoted by
TPM

Differential Forms
The maps ω : TPM × TPM × . . . TPM → R with the condition that,
ω(v1, v2, . . . , vk) = −ω(v2, v1, . . . , vk) are called k-forms on the manifold M

Push forward
consider a map φ : M → N then, the push forward of this map is another

map such that :
φ∗ : TPM → TPN

Pull back
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The pull back (with respect to the map φ ) of any form on the manifold is
defined as,

φ∗ω(v1, v2, . . . , vk) = ω(φ∗v1, φ∗v2, . . . , φ∗vk)
where v1, v2, . . . , vk belong to TPM and ω acts on vectors in TPN

3.2 Fibre Bundles

Now, we will look at the most important concept needed to understand Berry
Phase as a holonomy : The Fibre Bundle.

A fibre bundle is a space Q for which we have,
1. A base space B

2. A projection π : Q→ B
3. Fibres π−1(b) for b ∈ B. (All of these fibres are homeomorphic to F , This
means that they are all homeomorphic to each other as well.)
4. A structure group G of homeomorphisms of F into itself. (This basically tells
that how can we go from one fibre to another or on different points of the same
fibre.)

We also have the conditions that:
i. B has a covering by open sets Ui such that Bundle is locally trivial i.e

π−1(Ui) is homeomorphic to Ui × F

ii. If hj is the map giving homeomorphisms on fibres, then hjh
−1
k ∈ G

So, we have a large space Q. Through the map π , it is projected onto a
smaller space B. Since B is smaller than Q, a single point in B will correspond
to multiple points in Q. The collection of all these points to which any single
point b in B corresponds to is given by the inverse map π−1(b) and this is called
the fibre.

Locally, the larger space Q looks like the product of these fibres and open
sets in the samller space B but, globally, this is not necessarily true, Q can have
totally different topologies. If it looks like Ui ×F globally also, then it is called
a trivial fibre bundle.

As an example consider a cylinder. The total space is the cylinder. The base
space is a circle and the fibre is the real line. (The projection is that all of the
real line is mapped to a single point on the circle) We can see it as the product
of a circle and the real line. (i.e at each point of a circle, attach a real line and
we get a cylinder.), So we can write the cylinder as S1 ×R. Therefore, this is a
trivial fibre bundle. On the other hand, consider the mobius strip. Locally, we
can write it as the product of a circle and the real line. But globally, we cannot
do so due to the twist in its shape. Hence this is a non-trivial fibre bundle.
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If the structure group is the same as the fibre i.e, F = G then, this is known
as a principle fibre bundle.

3.3 Connection

Now, we are ready to define the connection on a Fibre Bundle.

Vertical Subspace
The vertical subspace of the tangent space TuP is defined as:
VuP ≡ {X ∈ TuP |π∗X = 0}

Recall that π is a map from P to B (The Base space) , so its push forward
is a map from TuP to TuB The vertical subspace consists of all those vectors
in the Tangent space of P that are mapped to the null vector in the base space.
We can see that only those vectors that are along the fibres will be mapped
to the null vector in the base space. Hence the name vertical. We are not
moving ”horizontally”. If we had been moving horizontally, i.e from one fibre
to another , then, we couldnt have landed on the null vector in the base space
because different fibres correspond to different points in the base space. The
only way that we can land on a null vector in the base space is that we move
along the fibre only (since all the fibres are mapped to a single point in B, if
we move only along fibre, we are not moving in B, therefore, we get a null vector.)

Connection
A connection is a smooth function of u that defines the Horizontal subspace

in the following way (for each u) :

i. TuP = HuP ⊕ VuP where VuP is defined above.
This means that we can write the tangent space as a direct sum of the vertical
subspace and the horizontal subspace.

ii. Rg∗HuP = HugP
Rg∗ is the push forward of the right action of the structure group (which is

: Rgu = ug).
This is simply telling us how two horizontal subspaces along the same fibre are
related. (They are on the same fibre because u and ug lie on the same fibre , g
is an element of G, the structure group.)

If we have any tangent vector X in TuP , we can clearly decompose it into
two components : the vertical component (XV ) and the Horizontal component
(XH).

Ehresmann connection
An Ehresmann connection on a principle fibre bundle is a 1-form ω that has

values in the lie algebra of G such that,

8



i. ω(vu) = dg(t)
dt |t=0

ii. It varies smoothly with u (u ∈ P )
iii. For any X ∈ TuP , R∗gωug(X) = ωug(RgX) = g−1ωu(X)g

This is simply another way of defining a connection. (It is defined as the
projection of Tangent Space onto the vertical subspace i.e, ω : TuP → VuP .)

The Horizontal subspace is then simply defined as the kernel of this map :

HuP = {X ∈ TuP |ω(X) = 0}

In terms of local co-ordinates, we have,

Aα = s∗αω , where

sα : Uα → P , or more precisely, sα : Uα → π−1(Uα)

Horizontal Lift
consider a curve c : R→ B in the base manifold parametrized by t. We can

lift this curve horizontally into the total space P. Call this lifted curve c̃.
The Horizontal Lift is defined as :

i. πc̃(t) = c(t) That is when we apply the projection map on the curve in P,
we get the curve in B.

ii. The tangent vectors of c̃(t) lie in the Horizontal subspace. That is they
have no vertical component. This concept is useful because we are only moving
across fibers and not along fibers (when we say that the tangent vectors to the
curve have no vertical component). We can keep moving along a single fibre if
we want but that only corresponds to a single point in B.

The curve c̃(t) is uniquely specified if we give its starting point. i.e we spec-
ify c̃(0). This is because the condition that the curve is lifted horizontally will
automatically ensure that only specific points are selected in the total space
leading to the uniqueness of the lifted curve.

3.4 Holonomy

Suppose that we have a closed curve c(t) (i.e c(0) = c(T )) that is horizontally
lifted. The question is that whether the lifted curve (c̃(t)) is also closed?

It might be closed, but in general it will not be closed. Why is this so? This
is because a single point in B where c(t) lives corresponds to a whole fibre in P.
So, if c(0) is mapped to c̃(0), this does not mean that c(T ) will also be mapped
to c̃(0). Rather, it can be mapped to any point on the fibre on which c̃(0) is.
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So, in general,

c̃(T ) 6= c̃(0)

However, we know that if we have to move along a fibre, it is determined by
the structure group. So, these two are related by an element of the structure
group. Explicitly,

c̃(T ) = c̃(0)h where h ∈ G

This phenomena in which a closed curve in the Base Space is not necessarily
lifted to a closed curve in the total space is known as holonomy.

The set of all of these elements h also forms a group known as the holonomy
group. It is clear that this is a subgroup of the structure group.

3.5 Berry Phase as Holonomy

To recognize Berry Phase as a Holonomy, we have to look at the underlying
Fibre Bundle. Consider the parameter space as the base manifold. Any state
is completely characterized by the parameters R upto a phase eiφ. This means
that we can view the total space as a fibre bundle in which the base space is the
parameter space and the fibres are eiφ. Since they make up a Unitary group, we
note that F = U(1). We also note that the structure group (which tells how to
move along a fibre) is also the unitary group i.e G = U(1). So this is a principle
bundle.

Recalling the gauge potential An(R) derived earlier in section 2 , the con-
nection is defined as,

A = iAn(R).dR = −〈n|d|n〉 , where d is the exterior derivative.

The Holonomy is determined by integrating the connection over a closed
loop.

h =
∮
C
A = i

∮
C
An(R).dR

But recall that γ(C) =
∮
C
An(R).dR

Hence, we can see that,

h = iγ(C) (3.1)

Hence, it is clear that we can see the Berry Phase as a holonomy of the
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connection defined on some fibre bundle.(If we know how to choose the connec-
tion!!!)

4 Spin 1
2 Particle in a Magnetic Field

Consider a spin- 1
2 particle that is subject to a magnetic field ~B(t) which is

rotating adiabatically around z-axis with a frequency ω. The angle it makes
with the z-axis is θ.

Then, we can write the magnetic field as,

~B(t) = B0

 sin(θ)cos(ωt)
sin(θ)sin(ωt)

cos(θ)


The Hamiltonian of this particle is given as,

H = µ~B.~σ (4.1)

where, µ = q~
2m and,

σ =

 σx
σy
σz


are the pauli matrices.
Then, we get,

H = µB0

(
cos(θ) e−iωtsin(θ)

eiωtsin(θ) −cos(θ)

)
The eigenvalue equation H|φn(t)〉 = En|φn(t)〉, then has two solutions,

|φ+(t)〉 =
(

cos( θ2 )
eiωtsin( θ2 )

)
with energy E+ = µB0

and,

|φ−(t)〉 =
(
−sin( θ2 )
eiωtcos( θ2 )

)
with energy E− = −µB0

Now, to calculate the Berry phase, we can either go to the parameter space
where it is given by equation (2.10) or, we can find it from (2.9) as :

γ =
∫ T

0

dt i〈φ| d
dt
|φ〉 (4.2)

It would be easier to use the above equation.
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So, we get (with T = 2π
ω )

γ± = −π(1∓ cos(θ)) (4.3)

Now, we look at how we can interpret this in terms of holonomy.

The base space consists of (θ, φ) where φ = ωt

As defined in section 3.5, the connection is A = −〈n|d|n〉

In our case, we have,

|φ+(t)〉 =
(

cos( θ2 )
eiφsin( θ2 )

)
This is a function of the parameter space (which is the base space). So, it is

a 0-form.
The exterior derivative of functions or 0-forms is given as : df =

∑
i
∂f
∂xi dx

i

In our case, θ is not changing, so we only have dφ

Then, d|φ+〉 = ∂|φ+〉
∂φ dφ

=
(

0
ieiφsin( θ2 )

)
dφ

Then,

〈φ+|d|φ+〉 = i
2 (1− cos(θ))dφ

=⇒ A = −〈φ+|d|φ+〉 = − i
2 (1− cos(θ))dφ

And, the holonomy is,

h =
∮
C
A =

∫ 2π

0
− i

2 (1− cos(θ))dφ = −iπ(1− cos(θ))

Then, from (3.1), we recover the Berry phase as,

γ+ = −π(1− cos(θ))

(Similarly for γ−). Which is the same as what we found before. Hence prov-
ing in this example that we can calculate Berry Phase from holonomy of some
connection on a fibre bundle and that we can view Berry Phase as a Holonomy.
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5 Aharonov Bohm Effect

Consider a tube in which the magnetic field inside is B and outside is 0. Also
consider a box of charged particles at a distance R from this tube. The corre-
sponding vector potential is A(r).

Now when this box is transported around the tube in a closed loop, it ac-
quires a phase due to the presence of the vector potential even though the
magnetic field outside is zero.

The Hamiltonian of a charged particle in the presence of an Electromagnetic
field is, (we are taking the scalar potential (φ) to be zero.

H = 1
2m (i~∇− qA)2 + V

Then, the solution of the Schrodinger’s equation is,
ψ(r) = exp( iq~

∫ r
0
dŕ A(ŕ))ψ̃(r)

where ˜ψ(r) is a solution of the Schrodingers equation in the absence of the
vector potential.

In our case of the box of particles, we can write the solution as,

ψ(r −R) = exp( iq~
∫ r
R
dŕ A(ŕ))ψ̃(r −R)

Then,

〈ψ|∇R|ψ〉 =
∫ ∫ ∫

d3r ψ∗∇Rψ (5.1)

∇Rψ = exp( iq~
∫ r
R
dŕ A(ŕ))∇Rψ̃ + exp( iq~

∫ r
R
dŕ A(ŕ))ψ̃ iq~ A(R)

using this along with the definition of ψ in equation (5.1) and (2.14) , we
get,

An(R) =
−q
~
A(R) (5.2)

And finally, we have,

γn(C) =
∮
C

An(R).dR = − q
~

∮
C

A(R).dR (5.3)

=⇒ γn(C) = − q
~

∫ ∫
S

(∇×A).dS = − q
~

∫ ∫
S

B.dS (5.4)

=⇒ γn(C) = −qφm
~

(5.5)

where φm is the magnetic flux.

Now, we look at this in terms of the holonomy.
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The parameter space (which is the base space) consists of R and is in fact
the whole physical space.

So, the exterior derivative will act on ψ as : d|ψ〉 = ∂|ψ(R)〉
dR dR

〈ψ|d|ψ〉 =
∫ ∫ ∫

d3r ψ∗dψ (5.6)

Define, f(R) = q
~
∫ R
0
A(r)dr

Then, dψ = d(eif(R)ψ̃(R)) = eif(R) ∂ψ̃
∂Rdr + eif(R)ψ̃i qA~ dr

Using this in (5.6) along with definition of connection, we get,

A = − iqA(R)
~

dR (5.7)

So that,

h =
∮
C

A = − iq
~

∮
A(R).dR = − iq

~
φm (5.8)

Comparing this with (3.1) , we get,

γn(C) = − qφm

~

Which is, once again, exactly the same as we found before.
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